SL330 CEPUЯ

Лазеры серии SL330 отлично подходят для использования в тех сферах применения, где необходимы высокоэнергетичные пикосекундные импульсы.Сжатие импульсов по технологии обратного стимулированного рассеяния Бриллюэна (SBS), используемое в лазерах серии SL300 – это простой и экономичный способ генерации пикосекундных импульсов с уникальной возможностью получения импульсов с изменяемой длительностью.

Сердцем системы является наносекундный генератор с электрооптической модуляцией добротности с одной продольной модой. Для генерации импульсов с одной продольной модой с гладкой временной огибающей вместо внешних узкополосных диодных лазеров используются селективные свойства эталона Фабри-Перро и лазерного резонатора. В научной литературе данный метод известен как самостоятельная накачка (selfseeding technique).

Сжатие импульса происходит в специальной SBS ячейке и в зависимости от геометрии взаимодействия длительность импульса может варьироваться в диапазоне 170 – 1500 пс. Длительность импульса можно изменять с определенным шагом,

если установлена опция –VPx (изменение длительности импульса). После SBS сжатия импульсы направляются в многопроходной усилитель для усиления до энергии в 500 мДж.

Терморегулируемые генераторы гармоник, основанные на KD*P и KDP кристаллах, а также оптика для разделения гармоник доступны в качестве стандартных опций. Для каждой длины волны предусмотрен отдельный выходной порт.

Источники питания и охлаждения установлены в 19-ти дюймовую стойку.

Очень низкое значение джиттера оптического импульса по отношению запускающему импульсу модулятора добротности гарантирует надежную синхронизацию лазерной системы с внешним оборудованием.

Лазерная система управляется с помощью пульта дистанционного управления (ДУ) или ПК через RS-232 соединение за счет специального программного обеспечения, совместимого с ОС Windows. Также с помощью пульта ДУ можно управлять основными параметрами лазерной системы. Пульт ДУ имеет экран высокой яркости, что позволяет легко им пользоваться, даже надевая защитные очки. Также с программным обеспечением поставляются драйверы для LabView.

Высокоэнергетические Nd:YAG лазеры, использующие технологию сжатия SBS

ОСОБЕННОСТИ

- ▶ Инновационный и экономичный дизайн
- ▶ Энергия до 500 мДж на импульс при длине волны 1064 нм
- ▶ Длительность импульса 150 nc
- Задающий генератор с единичной продольной модой (SLM)
- ▶ Коэффициент контрастности предимпульса более 10⁵:1
- ▶ Внешний запуск с низким джиттером
- ▶ Возможность гибкой синхронизации
- Опция изменения длительности импульса
- Драйверы LabView для удобства управления через ПК по интерфейсу RS232
- Дистанционное управление посредством клавиатуры
- Компактный блок питания и лазерная головка

СФЕРЫ ПРИМЕНЕНИЯ

- Исследования плазмы
- Медицинская сфера
- Нанесение и удаление материалов
- Голография
- Абсорбционная спектроскопия плазмы, созданной лазерным излучение
- Наведение спутников
- ▶ Генерирование источника экстремального ультрафиолетового излучения для фотолитографии
- Накачка каскадов усиления

ХАРАКТЕРИСТИКИ 1)

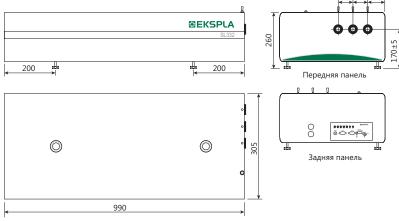
Модель	SL330	SL332	SL333	SL334
Макс. энергия импульса:				
при длине волны 1064 нм	30 мДж	150 мДж	250 мДж	500 мДж
при длине волны 532 нм ²⁾	12 мДж	70 мДж	120 мДж	240 мДж
при длине волны 355 нм ³⁾	7 мДж	40 мДж	80 мДжЈ	140 мДж
при длине волны 266 нм ⁴⁾	4 мДж	25 мДж	40 мДж	80 мДж
при длине волны 213 нм 5)	2 мДж	10 мДж	15 мДж	25 мДж
Стабильность энергии импульсов (среднеквадра	атичное отклонение) ⁶⁾ :			
при длине волны 1064 нм	6 %	6 % 4 %		
при длине волны 532 нм	8 %	7 %		
при длине волны 355 нм	10 %	9 %		
при длине волны 266 нм	13 %	12 %		
при длине волны 213 нм	15 %	15 %		
Длительность импульса при 1064 нм (на уровне половины амплитуды) ⁷⁾	1	150±20 пс 170±20 пс		
РСтабильность длительности импульса при 1064 нм (среднеквадратичное отклонение) ⁸⁾	10 %			
Частота следования импульсов ⁹⁾	10 или 50 Гц	10 Гц		5 Гц
Ширина линии	≤0.1 cm ⁻¹			
Поляризация	Линейная, >50:1			
Джиттер оптического импульса (среднеквадратичное отклонение) 10)	0.5 нс			
Типичный профиль луча ¹¹⁾	С плоской вершиной, >70% соответствия гауссовой форме			
ВСтабильность пучка на 1064 ¹²⁾	50 мкрад			
ВТипичная расходимость луча 13)	<0.5 мрад			
Высота оси исходящего луча	170±5 мм			
Коэффициент контрастности	105:1			
Диаметр луча ¹⁴⁾	~6 мм	~8 мм	~10 мм	~12 мм
ФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ				
Размеры лазерной головки (Ш х В х Д)	255 × 790 × 240 мм	0 мм 305 × 990 × 260 мм		
Размеры шкафа электроавтоматики (Ш x B x Д)	550 × 600 × 530 мм	550 × 600 × 850 мм		
Длина разрывного кабеля	2.5 м			
ТРЕБОВАНИЯ К РАБОЧИМ ХАРАКТЕРИСТИКА	M			
Потребление воды (макс. 20 °C)	< 10 л/мин			
Комнатная температура	18-27 °C			
Относительная влажность	10-80 % (без конденсации)			
Требования к сети ¹⁵⁾	208 или 230 В перем. тока, однофазная, 50/60 Гц			208 или 380 В перем. тока, трехфазная, 50/60 Гц
Потребляемая мощность ¹⁶⁾	<1.5 κBA	<2.5 κBA	<3.5 κBA	<3.5 κBA

- Технические данные могут быть изменены без предварительного уведомления. Параметры, которые указаны как типичные, не являются стандартными. Они представляют собой лишь типичные рабочие характеристики, и могут варьироваться в каждой единице выпускаемой нашей компанией продукции. Если не указано иное, то все технические характеристики измеряются при длине волны 1064 нм.
- Для опции SH. Выходы не активны одновременно. Уточните значения энергий на других длинах волн.
- Для опции ТН. Уточните значения энергий на других длинах волн.
- Для опции FH. Уточните значения энергий на других длинах волн.
- Для опции FiH. Выходная мощность отличается. Просьба при заказе уточнять

- энергию импульса для других значений длин волн.
- 6) Измеряется по 300 импульсам.
- Опционально переменная длительность импульса в диапазоне 170-500 пс или 500-1000 нс.
- 8) Усреднена по 300 импульсам с использованием осциллографа и фотодиода в полосе частот 12 ГГц и с частотой дискретизации 40 Гс/с.
- Доступна кастомная частота следования импульсов до 50 Гц.
- 10) Относительно запускающего импульса модулятора добротности. Доступен запускающий импульс с низким уровнем
- 11) По отдельному заказу профиль лазерного луча может быть приближен к гауссовому.

- 12) Среднеквадратическое значение, измеренное для 300 импульсов.
- $^{13)}$ Полный угол, измеряемый при длине волны 1064 нм по уровню $1/e^2$.
- Диаметр луча измеряется при длине волны 1064 нм по уровню 1/e².
- 15) Трехфазное питание ~208 или 380 В перем Тока требуется для 20 или 50 Гц версий.
- 16) Для систем с частотой следования 5 или 10 Гц.

OPTIONS


▶ Опции изменения длительности импульса –VPx и –VPCx

Лазеры серии SL предлагают уникальную возможность для изменения длительности импульсов. Это достигается путем изменения геометрии взаимодействия в SBS-компрессоре. Два диапазона перестройки 170 – 500 пс (опция –VP1) и 500 – 1000 пс (опция -VP2) доступны как стандартные.

Если же опция –VPx требует ручной подстройки оптических компонентов для изменения длительности импульсов, то опция -VPCх является механизированной, что позволяет изменять длительность импульсов с ПК или через пульт дистанционного управления.

Примечание. некоторые характеристики могут измениться, когда лазер сконфигурирован под различную длительность импульсов. Пожалуйста, обращайтесь в за более подробной информацией к нашим специалистам.

ГАБАРИТНЫЕ РАЗМЕРЫ

Puc. 1. Габаритные размеры лазеров SL332, SL333 и SL334

ПРИМЕНЕНИЯ

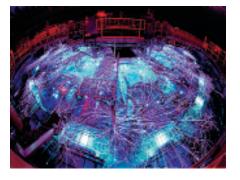
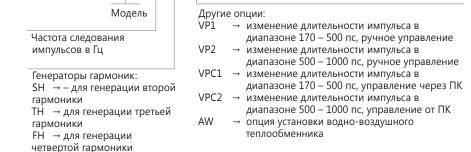



Рис. 2. Лазерная система серии SL330 используется в качестве источника вспышки в высокоскоростном фотографировании для освещения проводов

. Представлено доктором Randy Montoya, Сандийская национальная лаборатория,

ИНФОРМАЦИЯ ДЛЯ ЗАКАЗА

SL332-10-SH-VP1

