Серия FemtoLux 30

EKSPLA Fortidux30

Инновационная система охлаждения

В лазере FemtoLux 30 используется инновационная система охлаждения, и он устанавливает новые стандарты надежности среди промышленных фемтосекундных лазеров. В других лазерах с аналогичной оптической мошностью для охлаждения используется вода, что означает необходимость в дополнительном громоздком и тяжелом водяном чиллере. Чиллер требует периодического обслуживания - слива хладагента и промывки контура охлаждения, а также замены водяного фильтра. Более того, в случае утечки воды может быть повреждена не только лазерная головка, но и более дорогое оборудование. Вместо воды для передачи тепла от лазерной головки в FemtoLux 30 используется инновационный метод прямого охлаждения хладагентом. Это означает, что для охлаждения не используется вода. Прямое охлаждение хладагентом обеспечивает высочайшую скорость теплопередачи, высокую температурную стабильность, небольшие размеры и малый вес. Хладагент после компрессора по гибким армированным шлангам доставляется к охлаждающей плите. Вся система циркуляции хладагента полностью герметична. Охлаждающая пластина снимается с лазерной головки, чтобы сделать установку лазера более удобной внутри любого оборудования для лазерной обработки. В отличие от систем с водяным охлаждением, система прямого охлаждения хладагентом не требует периодического обслуживания.

Оборудование для охлаждения лазера интегрировано с блоком питания лазера в единый стоечный корпус высотой 4U и общим весом всего 15 кг.

Идеальный и универсальный инструмент для микрообработки

Фемтосекундный лазер FemtoLux 30 отличается настраиваемой длительность импульса от < 350 фс до 1 пс и может работать в широком диапазоне частот следования импульсов, управляемом акусто-оптическим модулятором (АОМ), от одного импульса до 4 МГц. При этом максимальная энергия > 250 мкДж, достигаемая при работе в режиме пакета импульсов, обеспечит более высокую скорость абляции и производительность обработки для различных материалов.

FemtoLux 30 – это идеальный инструмент для производства дисплеев и микроэлектроники, микрообработки и маркировки хрупких материалов, таких как стекло, сапфир или керамика, а также для высококачественной микрообработки различных металлов и полимеров.

Инновационная электроника управления лазером обеспечивает простоту контроля FemtoLux 30, что сокращает время и человеческие ресурсы, необходимые для интеграции этого лазера в другое оборудование.

Фемтосекундный лазер для микрообработки

Отличительные особенности

- Типовая максимальная выходная мощность 30 Вт
- > 90 мкДж в импульсе
- > 250 мкДж в режиме пакета импульсов
- Длительность импульса < 350 фс 1 пс
- Частота следования от единичного импульса до 4 МГц (с AOM)
- ▶ СКО долговременной стабильности выходной мощности < 0.5% за 100 ч</p>
- Обслуживание не требуется
- Полностью «сухой» (вода не требуется)
- Прочная и герметичная лазерная головка
- Блок питания и чиллер интегрированы в единую стойку высотой 4U (≈ 180 мм)
- ▶ Легкая и быстрая установка
- Универсальное управление лазером с помощью команд REST API через RS232 и LAN
- Совместимость с полигональным и гальваносканером, а также с контроллерами PSO (синхронизированный выход для позиционирования)
- 2 года полной гарантии

Области применения

- ► Сверление, резка, восстановление LCD, LED, OLED
- ▶ Производство микроэлектроники
- Микрообработка стекла, сапфира, керамики
- Внутриобъемное структурирование в стекле
- Микрообработка различных полимеров
- Микрообработка различных металлов

Характеристики

Модель	FemtoLux 30
Основные характеристики 1)	
Центральная длина волны	1030 нм
Частота следования лазерных импульсов (PRR) ²⁾	200 кГц – 4 МГц
Частота следования после делителя частоты (PRF)	PRF = PRR / N, где N = 1, 2, 3,, 65000; ед. импульс
Максимальная средняя выходная мощность	> 27 Вт (типовое значение 30 Вт)
Максимальная энергия импульса	> 90 мкДж
Максимальная энергия пакета импульсов ³⁾	> 250 мкДж
Долговременная стабильность выходной мощности ⁴⁾	CKO < 0.5%
Стабильность энергии от импульса к импульсу ⁵⁾	CKO < 1%
Диапазон перестройки длительности импульса	< 350 φc ⁶⁾ – 1 πc
Качество пучка	M² < 1.2 (типовое значение < 1.1)
Степень округлости пучка	> 0.85
Расходимость пучка, полный угол	< 1.0 мрад
Температурная стабильность наведения пучка	< 20 мкрад/°С
Режим синхронизации	Внешняя / внутренняя
Контроль импульсов на выходе	Делитель частоты, селектор импульсов, режим пакета импульсов, ослабление мощности
Интерфейс управления	USB / RS232 / LAN
Физические характеристики	
Габаритные размеры лазерной головки (Д×Ш×В)	430 × 569 × 135 мм
Длина соединительного кабеля	3 м, отсоединяемый
Требования по эксплуатации	
Охлаждение	Система прямого охлаждения хладагентом
Рабочая температура	18 – 27°C
Относительная влажность	10 – 80% (не конденсированный воздух)
Напряжение питания	100 – 240 В перем. тока, однофазное, 50/60 Гц
Степень загрязненности воздуха	ISO 9 (комнатный воздух) или лучше

¹⁾В виду дальнейшего улучшения все характеристики могут быть изменены без предварительного уведомления. Параметры, обозначенные как типичные/типовые, приведены для ознакомления – они отображают типовую производительность и могут отличаться для каждого вновь производимого лазера.

⁶При PRR > 500 кГц. При PRR < 500 кГц кратчайшая длительность импульса составляет < 400 фс

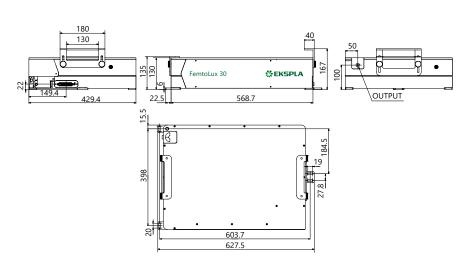


Рис. 1. Габаритные размеры лазерной головки фемтосекундного лазера FemtoLux 30

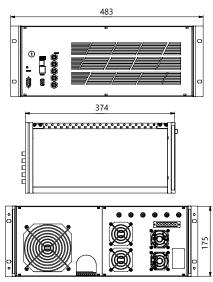


Рис. 2. Габаритный чертеж блока питания

²!Когда делитель частоты настроен на вывод каждого импульса. Полностью управляется с помощью встроенного АОМ.

³⁾Когда количество импульсов в пакете установлено на 10, а PRR установлен на минимальное значение. Разделение между импульсами в пакете (скважность) ≈ 20 нс

⁴⁾Более 100 часов после прогрева при постоянных условиях окружающей среды.

⁵⁾При постоянных условиях окружающей среды.