Применение статического волюметрического метода (химическая и физическая адсорбция) в контролируемых условиях температуры и давления для определения микроструктурных свойств твердых материалов и порошков

Газо-адсорбционный порозиметр Thermo Scientific Surfer

Станция дегазации Surfer

- Устройство для подготовки образца может быть совмещено с аналитическим модулем Surfer или использовано независимо, что обеспечивает гибкую компоновку лабораторного пространства
- Станция дегазации оснащена тремя разъемами с нагревом до 450 °C, независимым источником вакуума и контролем температуры
- Модуль оборудован системой плавного создания вакуума для предотвращения уноса порошка

Surfer быстро и точно определяет следующие параметры пористых материалов:

- Удельная поверхность (включая метод БЭТ с криптоном)
- Распределение ультрамикро-, микро- и мезопор по размерам
- Удельный объем пор
- Концентрация доступных активных центров катализаторов

Новый Surfer имеет ряд непревзойденных особенностей:

• улучшенный дизайн манифольда для достижения крайне высоких значений вакуума над образцом, что является необходимым при исследовании ультрамикропористых материалов

- ПИД-контроль температуры (стабильность $\pm 0,1$ °C) в изолированном отсеке, содержащем манифольд, все трубки, контактирующие с измеряемым газом, и датчики давления. Превосходная стабильность системы, независимо от изменения температуры окружающей среды.
- Уникальная система впрыска газа для ввода малых количеств газа с максимальной точностью.
 Отсутствие мертвых объемов.
- Контроль уровня охлаждающей жидкости для стабилизации давления в системе
- Широкий диапазон доступных конфигураций
- Удаленное управление прибором благодаря LAN/COM портам связи

Технические характеристики газо-адсорбционного порозиметра Surfer Thermo Scientific

Аналитические возможно	СТИ
	Физическая и химическая адсорбция
	Один аналитический порт
	Три независимых порта подготовки образца
Диапазон измерений	
Удельная площадь поверхности:	от 0,01 м²/г и выше для азота (77 K), от 0,0005 м²/г и выше (для криптона 77 K) в зависимости от природы образца и комплектации прибора
Удельный объем пор:	от 0,0001 см³∕г
Диапазон размеров пор:	0,32 - 500 нм в диаметре (в зависимости от расчетной модели и комплектации прибора)
Используемые газы	
Адсорбат:	Четыре независимых порта для газа, выбираемые автоматически
Входное давление:	Максимальное входное давление 150 кПа
Допустимые адсорбаты:	$N_{2^{\prime}}$ Ar, CO $_{2^{\prime}}$ He, Kr, H $_{2^{\prime}}$ О $_{2^{\prime}}$ СО, СН $_{4^{\prime}}$ легкие углеводороды, любые неконденсирующиеся в данных условия газы
Держатели образцов	
Держатель малого объема:	10 см³, диаметр входного отверстия 8 мм (доступен с вакуумным краном)
Держатель среднего размера:	15 см ³ , диаметр входного отверстия 8 мм (доступен с вакуумным краном)
Система вакууммировани (в зависимости от комплектации	
Первичный вакуум:	 Роторный двухстадийный вакуумный насос, конечный вакуум 4,5 × 10⁻³ торр с фильтром из оксида алюминия Безмасляный диафрагменный насос: конечный вакуум 2,6 торр Опционально: безмасляный насос (конечный вакуум 0,05 торр)
Вторичный вакуум:	1. Турбомолекулярный «drag» насос (давление над образцом ниже 1 ×10 ⁻⁵ торр) Турбо "drag" насос очень компактен, что позволяет устанавливать его в манифольд максимально близко к камере с образцом, обеспечивая измерение реального конечного вакуума с точностью более 10 ⁻⁵ торр. Степень компрессии составляет для N ₂ 3×10 ⁻⁶ торр, для Ar 3×10 ⁻⁷ торр 2. Турбомолекулярный насос (конечный вакуум 7,5 ×10 ⁻⁸ торр)
Измерение вакуума:	1. Датчик Micropirani, диапазон измерений давления от атмосферного до 1 \times 10 $^{-5}$ торр 2. Вакуумметр 100, диапазон измерений от 0,75 торр до 7,5 \times 10 $^{-4}$ торр
Фильтры:	Фильтр из оксида алюминия, расположенный между вакуумным насосом и манифольдом (рекомендован при использовании роторного масляного насоса)

Технические характеристики аналитического модуля Surfer Thermo Scientific

Зона контроля температуры

Аналитический шкаф:	 Контроль температуры (включая манифольд, датчики давления и трубки) Установленная температура 35,0 °С Стабильность температуры в пределах 0,1 °С Датчик температуры РТ 100
	• Разрешение 0,1 °C • ПИД-контроль температуры

Манифольд: • Датч

• Датчик температуры РТ 100 • Разрешение 0,01°C

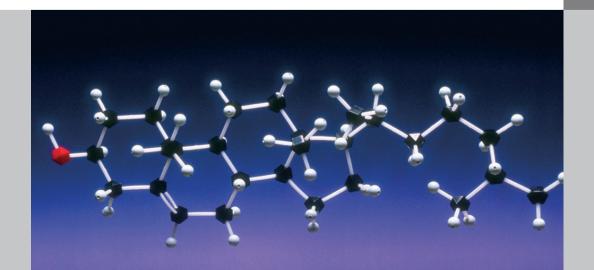
Измерение давления

Датчик впрыска: Абсолютный, емкостной 1000 торр FS, точность более чем 0.25%, максимальное разрешение экрана 0.0001 торр

Датчик давления равновесия: (до трех штук в зависимости от комплектации)

- 1. Абсолютный, емкостной 1000 торр FS, точность более чем 0.25%, максимальное разрешение экрана 0.0001 торр
- 2. Абсолютный, емкостной 100 торр FS, точность более чем 0.25%, максимальное разрешение экрана 0.00001 торр
- 3. Абсолютный, емкостной 10 торр FS, точность более чем 0.25%, максимальное разрешение экрана 0.000001 торр
- 4. Абсолютный, емкостной 1 торр FS, точность более чем 0.25%, максимальное разрешение экрана 0.0000001 торр

Точность:


Встроенная процедура линеаризации и калибровки обеспечивает определение давления с точностью более чем 0.1%, при использовании стандартных преобразователей

Встроенный аналогово-цифровой преобразователь:

- 24 бит АЦП, 8 каналов, 8 знаков разрешение
- 12 бит АЦП, 4 канала, 4 знака разрешение

Давления насыщения:

Датчик, откалиброванный по атмосферному давлению (разрешение 0,1 торр) может быть использован с жидким аргоном/азотом

Технические характеристики аналитического модуля Surfer Thermo Scientific

Система охлаждения	
Используемые хладагенты:	Жидкий азот или жидкий аргон с автоматическим контролем уровня жидкости в сосуде. Автоматический подъем сосуда Дьюара.
Контроль уровня:	Определяется датчиком. Точность определения уровня \pm 50 микрон
Емкость сосуда:	3 л
Продолжительность использования без замены:	72 часа для жидкого азота. Максимальная продолжительность зависит от природы образца
Питание и габариты	
Питание:	230 B (± 10 %) , 50 - 60 Гц, 1350 BA макс.
Габариты:	70 x 50 x 107 (Г x Ш x B)
Bec:	105 кг (в упаковке 130 кг)
Условия окружающей среды:	Температура от 15 до 30 ℃, влажность от 30 до 85 %

Технические характеристики	модуля дегазации SurferThermo Scientific
TOXIIN ICCINIC AUPUNTOPIICININI	иодули догазации осно полистио основание

Порты дегазации:	Три станции дегазации с независимым доступом к вакууму. Максимальная степень вакууммирования зависит от установленной системы создания вакуума. Система создания мягкого вакуума предотвращает унос порошков.
Источник вакуума:	Станция дегазации может быть подключена к системе вакууммирования аналитического модуля, а также иметь абсолютно независимый источник вакуума.
Температура:	От 25 °C до 450 °C с шагом 1 °C
Точность:	± 1% от всего диапазона измерений
Процедуры нагрева:	 баллистический ⇒ оператор на двух станциях программируемый, скорость от 1 до 20 °С/мин с многократным циклом ⇒ оператор на одной станции
Питание и габариты	
Питание:	230 B (± 10 %) , 50 - 60 Гц, 350 B-A макс.
Габариты:	30 x 40 x 67 (Г x Ш x B)
Bec:	23 кг (в упаковке 43 кг)
Условия окружающей среды:	Температура от 15 до 30 °C, влажность от 30 до 85 %

Заложенные расчетные модели для Surfer Thermo Scientific

Стандартное программн	
Главные функции:	Управление прибором, настройка аналитических параметров, отображение изотермы в режиме реального времени, контроль давления, температуры и уровня хладагента во времени (все данные сохраняются в отдельном файле) расчет и оформление отчета. Разработано для Window XP/7
Удельная площадь поверхности:	Модель БЭТ с двумя параметрамиМетод Дубнина-Радушкевича-Каганера
Распределение пор по размерам:	Методы: Баррета-Джойнера-Халенды, Хорвата-Кавазое, Саито-Фолей, NLDFT
Графики:	Изотерма адсорбцииПлощадь поверхностиРаспределение пор по размерам (в т.ч. гистограмма)
Отчеты:	Функция сохранения данных
Формат данных:	Широкий диапазон доступных форматов для экспорта данных
Расширенное программ	ное обеспечение
Главные функции:	Современные методы расчета удельной площади поверхности и распределения пор по размерам. Позволяет структурировать данные в необходимом для пользователя формате для непосредственного использования в научных публикациях. Разработано для Window XP/7
Удельная площадь поверхности:	 • Модель БЭТ с двумя параметрами, с тремя параметрами с нелинейной регрессионной функцией • Модель Лэнгмюра • Метод Дубнина-Радушкевича-Каганера • Метод ESW • t-plot • MP-plot
Стандартные изотермы для t-метода:	методы: Хэлси, Fransil, Харкинса-Джуры, Де Бура, Халенды, Lecloux, гидроксилированный оксид кремния, пользовательский стандарт
Распределение мезопор по размерам:	методы: Барретта-Джойнера-Халенды, Доллимора-Хила, Крэнстона-Инкли, Modelless метод
Распределение микропор по размерам:	методы: Хорвата-Кавазое, Саито-Фолей, Дубинина-Штокли
Доступные методики:	N ₂ – Графит (@ 77K), Ar – Графит (@ 77K, 87K), CO ₂ – Графит (194K, 273K, 298K), Ar – Цеолит (@ 87K, 77K), N ₂ – Цеолит (@ 77K)
Хемосорбция:	 Процедура вычитания изотерм для сильной и слабой хемосорбции Обратная экстраполяция к нулевому давлению для металлической поверхности и расчета дисперсии Модель Лэнгмюра с переменной компонентой
Доступные графики:	Все расчеты применимы в графическом формате . Все графики могут быть отредактированы по многим компонентам и экспортированы в графическом файле с высоким разрешением
Доступные формы отчетов:	Суммарный, расширенный, стандартный. Каждый тип отчета может быть отредактирован пользователем вручную.

COMPANY WITH QUALITY MANAGEMENT SYSTEM SERTIFIED BY DNV