

Лазер с высокой энергией в импульсе с модуляцией добротности

Отличительные особенности

Энергия импульса до **100 мДж** при средней мощности до **4 Вт**

Возможность вывода излучения на **1053** нм или **1064 нм**

Полностью воздушное охлаждение (вода не требуется)

Различная частота следования импульсов до **100 Гц** Гладкое изменение частоты следования импульсов доступно на 1053 нм, когда лазер запускается внешним задающим генератором

Встроенный генератор синхроимпульса для запуска внешнего оборудования

Удаленное управление через Ethernet или Wi-Fi

Опциональная генерация второй гармоники с помощью навешиваемого генератора гармоник

Опциональная генерация второй, третьей, четвертой и пятой гармоник с помощью отдельного генератора гармоник

Опциональный аттенюатор излучения на основной длине волны

Опциональный измеритель мощности

Гарантированное время жизни диода накачки более 2 млрд. вспышек

Области применения

Лазерно-искровая эмиссионная спектроскопия (LIBS)

Времяпролетная спектроскопия (TOFS)

Спектроскопия лазерно-индуцированной флуоесценции (LIF)


Импульсный фотолиз

Матрично-активированная лазерная десорбция ионизация (MALDI)

Импульсное лазерное напыление (PLD)

Лазерная абляция

Накачка ОРО, лазеров на красителях и титансапфировых лазеров

Инновационный дизайн безводяного держателя лазерного кристалла с технологией задней накачки позволяет получить луч высокого качества с энергией до 100 мДж и/или средней мощностью до 4 Вт.

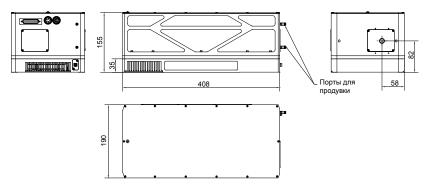
Лазеры серии Q2HE задают новый стандарт на мировом рынке – улучшенный дизайн лазера представляет собой эргономичное решение, требующее минимального обслуживания. У данных лазеров отсутствуют громоздкие источники питания или чиллеры, которые необходимо размещать под оптическим столом. Вся электроника находится в корпусе Q2HE, а внешними модулями являются только облегченные контроллер для управления лазером и адаптер питания на 27 В при энергопотреблении 50 – 150 Вт (в зависимости от модели).

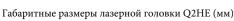
Импульсы длительностью менее 7 нс и низкая расходимость луча позволяют генерировать излучение на высших гармониках вплоть до 5-й (211 нм) с высокой эффективностью

Низкий уровень джиттера запускающего лазерного импульса доступен в режиме внутреннего запуска. При необходимости лазерное излучение может синхронизироваться внешним источником.

Управление лазером и отслеживание его статуса осуществляется через Ethernet с помощью встроенного веб-сервера. Любой компьютер или современный телефон является пригодным для управления таким лазером. Дополнительный API интерфейс предоставляется при необходимости интеграции лазера в пользовательские системы. Функциональные возможности лазеров серии Q2HE также могут быть расширены с помощью дополнительного оборудования:

- Выходное окно для излучения второй гармоники может быть получено с помощью навешиваемого генератора гармоник модели SHG
-) Возможность вывода излучения на высших гармониках (вплоть до 5-ой) с помощью отдельного генератора гармоник серии H-SMART
- Энергия импульса на основной длине волны может быть подстроена с помощью опционального моторизированного аттенюатора
- Энергия импульса может отслеживаться с помощью встраиваемого измерителя с аналоговым и/или цифровым выходом


Характеристики 1)


	Q2HE						
Модель	-D20	-D50	-D100	-E20	-E50	-F10	-F20
Основная длина волны излучения	1064 нм					1053 нм	
Частота следования импульсов ²⁾	20 Гц	50 Гц	100 Гц	20 Гц	50 Гц	10 Гц	20 Гц
Энергия импульса	40 мДж			70 мДж		100 мДж	
Типичная длительность импульса ³⁾	< 7 нс					< 6 нс	
Стабильность энергии от импульса к импульсу ⁴⁾	CKO < 0.5%						
Долговременное смещение мощности ⁵⁾	± 3%						
Профиль луча	Форма колокола, > 75% соответствие гауссоиде						
Расходимость луча 6)	< 1 мрад						
Поляризация	Линейная, горизонтальная						
Типичный диаметр луча 7)	3.0 мм			4.0 мм		5.0 мм	
Оптический джиттер ⁸⁾	СКО < 0.5 нс						
Опциональный генератор гармо	ник ⁹⁾						
526.5 / 532 нм	20 мДж			35 мДж		50 мДж	
351 / 355 нм	12 мДж			20 мДж		30 мДж	
263 / 266 нм	5 мДж			10 мДж		15 мДж	
211 / 213 нм	1.5 мДж			3 мДж		6 мДж	
Опциональный моторизированн	ный атт	енюатор ¹⁰)				
Диапазон ослабления	1 – 95 %						
Габаритные размеры							
Лазерная головка (190 × 408× 55 мм						
Блок управления (Ш \times Д \times В)	108 × 191 × 59 мм						
Адаптер питания (Ш \times Д \times В)	192 × 178 × 46 мм (типовые значения)						
Требования по эксплуатации							
Охлаждение	Воздушное						
Рабочая температура			15 – 30 °C	15 – 27 °C			
Относительная влажность	10 – 80% (неконденсированный воздух)						
Напряжение питания	90 – 230 В, перем. ток, 47 – 63 Гц ¹¹⁾						
	50 BT	100 BT	150 BT	80 BT	150 BT	70 BT	120 BT

1)Ввиду дальнейшего улучшения все характеристики могут быть изменены без предварительного уведомления. Если не указано иное, все характеристики измерены на основной длине волны при . максимальной частоте следования импульсов. Параметры, обозначенные как типовые/типичные, не являются характеристиками. Они отображают типовую производительность и могут изменяться от лазера к лазеру. 2)На заводе-изготовителе частота следования импульсов устанавливается на максимальную, указанную в таблице. По запросу доступны частоты следования до 200 Гц. 3)Измерена по уровню FWHM на основной длине волны с помощью фотодиода с временем нарастания 350 пс. . 4)Измерено на протяжении 30 секунд работы после прогрева. . 5)Измерена на протяжении 8 часов после 20-минутного прогрева при флуктуациях температуры не более ± 2 °C. 6)Полный угол, измеренный по уровню 1/е2. 7)Измерен на расстоянии 20 см от выходного окна лазера по уровню 4 с. 8)По отношению к падающему краю фронта запускающего импульса диода накачки. 9)Лазеры серии Q2HE совместимы с навешиваемым генератором второй гармоники модели SHG и со всеми . моделями генераторов гармоник серии

H-SMART. Энергия импульса, указанная для соответствующей гармоники, является максимально возможным значением, полученным на выходе соответствующего генератора гармоник. 10)Моторизированный аттенюатор

предназначен для крепления к корпусу лазера. Степень ослабления может меняться удаленно через управляющий интерфейс с помощью веб-сервера. 11)Лазер может быть подключен к подходящему источнику питания на 27 В постоянного тока – пожалуйста, уточняйте.

Mokslininku 6A LT-08412, Vilnius, Lithuania Quantum Light Instruments Ltd.

Phone: +370 5 250 3717 Fax: +370 5 250 3716 Email: sales@qlinstruments.com

Дистрибьютор в РФ: ООО "Промэнерголаб" 105318, Россия, г. Москва, ул. Ткацкая, 1 www.czl.ru

+7 (495) 22-11-208, 8 (800) 23-41-208 E-mail: info@czl.ru