НАНОСЕКУНДНЫЕ ПЕРЕСТРАИВАЕМЫЕ ЛАЗЕРНЫЕ СИСТЕМЫ

NT230 • NT235 • NT242 • NT200 • NT342 • NT350 • NT370 PhotoSonus M • PhotoSonus X

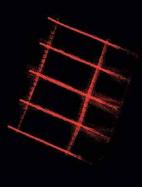
PhotoSonus M

Мобильная перестраиваемая лазерная система высокой энергии для получения фотоакустических изображений

Ввиду большой потребности в лазерных системах высокой энергии на рынке фотоакустики для визуализации больших объемов тканей компанией Ekspla была представлена система PhotoSonus M – обновленная высокоэнергетическая перестраиваемая лазерная система, используемая для фотоакустической визуализации. Проверенные временем наносекундный лазер накачки, параметрический генератор света, источник питания и система охлаждения интегрированы в едином прочном корпусе, что обеспечивает высокую мобильность системы, простоту использования и позволяет снизить затраты на обслуживание и содержание.

Высокая гибкость платформы PhotoSonus M делает данную систему простой в интеграции для использования в комплексах получения фотоакустических изображений: она полностью моторизирована и управляется через ПК, оснащена выходами для подачи внутренних и приема внешних синхронизирующих сигналов, а также может быть оснащена рядом дополнительных функций, например, быстрая перестройка по длинам волн в ПГС, моторизированный аттенюатор, внутренний измеритель энергии и электромеханический выходной затвор.

Недавно была введена опция быстрого переключения длин волн, которая позволяет каждому лазерному импульсу иметь различную длину волны во всем рабочем диапазоне перестройки сигнальной и холостой длины волны и в любой последовательности. Наличие данной опции в сочетании с высокой энергией в импульсе (до 180 мДж) и широким диапазоном перестройки (330 – 2300 нм) делает PhotoSonus M незаменимым источником получения изображения для любой фотоакустической системы.


Для получения еще большей глубины изображения и разрешения доступна модификация PhotoSonus M+ с максимальной энергией в 250 мДж на выходе.

Для удобства выходные порты PhotoSonus M и PhotoSonus M+ могут быть соединены практически с любым типом волоконных кабелей.

Отличительные особенности

- До 250 мДж на выходе
- Широкий диапазон перестройки от 330 до 660 нм и от 660 до 2300 нм
- Частота следования импульсов 10 Гц или 20 Гц
- Лазер накачки, ПГС и источник питанияинтегрированы в едином мобильном корпусе
- Низкие затраты на обслуживание
- Волоконные коннекторы с защитным предохранителем
- Быстрое переключение длин волн для двух соседних импульсов во всем рабочем диапазоне (опционально)
- Электромеханический выходной затвор (опционально)
- Встроенный измеритель энергии (опционально)
- Моторизированный аттенюатор (опционально)
- Доступ к излучению лазера накачки 1064/532 нм (опционально)
- Вывод сигнальной и холостой составляющих через один выходной порт (опционально)

Примеры фотоакустических изображений (с согласия PhotoSound Technologies, Inc.).

Наносекундные перестраиваемые лазерные системы

Характеристики

Модель	PhotoSonus M-10	PhotoSonus M-20	PhotoSonus M+
ΠΓC ¹⁾			
Диапазон длин волн			
Сигнальная волна	660 – 1064 нм		
Расширение сигнального диапазона (опция)	660 – 1300 нм		
Вторая гармоника от сигнального диапазона (опция)	330 – 530 нм (330 – 659 нм ²⁾)		
Холостая волна (опция)	1065 – 2300 нм		
Максимальная энергия импульса ³⁾	> 180 мДж	> 160 мДж	> 250 мДж
Частота следования импульсов	10 Гц	20 Гц	10 Гц
Шаг перестройки по длине волны			
Сигнальная волна	0.1 нм		
Холостая волна	1 нм		
Длительность импульса ⁴⁾	3 – 5 нс		
Спектральная ширина линии	< 10 cm ⁻¹		< 20 cm ⁻¹
Типичный диаметр пучка ⁵⁾	7 ± 2 мм		9 ± 2 мм
Физические характеристики			
Габаритные размеры (Ш×Д×В)	434 × 672 × 887 mm		
Требования по эксплуатации			
Рабочая температура	18 – 27°C		
Относительная влажность	20 – 80% (не конденсированный воздух)		
Напряжение питания ⁶⁾	208 или 240 В перем. тока, однофазное, 50/60 Гц		
Энергопотребление	< 1.0 κBA	< 1.5 κBA	< 1.5 κBA

¹⁾В виду дальнейшего улучшения все характеристики могут быть изменены без предварительного уведомления. Параметры, обозначенные как типичные/типовые, приведены для ознакомления – они отображают типовую производительность и могут отличаться для каждого вновь производимого лазера. Если не указано иное, все характеристики измерены на длине волны 700 нм. ²⁾Когда заказа опция расширения сигнального диапазона длин волн. ³⁾Измерено на длине волны 700 нм при свободном выходе. См. типовые перестроечные кривые для получения информации об энергии на других длинах волн. ⁹Значение по уровню FWHM. Измерено с помощью фотодиода с временем нарастания 1 нс и осциллографа с полосой пропускания 300 МГц. 5)Измерен по уровню 1/e2 на длине волны 700 нм при свободном выходе.

PhotoSonus M

Может быть подстроен по запросу. ⁶⁾При заказе должно быть указано напряжение питания в лаборатории.

Рис. 2. Типовые перестроечные кривые выходной энергии лазерных систем PhotoSonus M-10 и M-20 с опцией расширения сигнального диапазона длин волн.

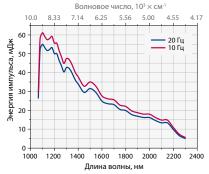


Рис. 3. Типовые перестроечные кривые выходной энергии лазерных систем PhotoSonus M-10 и M-20 с опцией холостого диапазона длин волн.

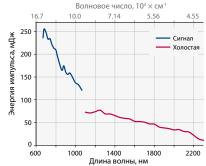


Рис. 4. Типовая перестроечная кривая выходной энергии лазерной системы PhotoSonus M+ для сигнального и холостого диапазонов длин волн.

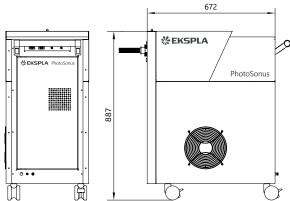


Рис. 5. Габаритные размеры лазерной системы PhotoSonus M (в мм).

434